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TRANSMISSION OF 2.43 MEV ELECTRONS THROUGH
THICK SILICON TARGETS

By
Jag J. Singh

NASA, Langley Research Center
Langley Station, Hampton, Virginia

ABSTRACT

The energy and angular distribution of electrons transmitted through
silicon targets of various thicknesses have been measured for normally
incident electrons of energy 2.43 MeV. The transmitted electron spectra
were measured with 5 mm deep Si(Li) detectors. The experimental results
have been compared with the calculated values obtained by using the NBS
program ETRAN-15, This program includes the effects of secondary
electrons and photons besides the effects of ionization energy loss
fluctuations. The inclusion of these effects in the theoretical calcu-
lations has improved the agreement between the theory and the experiment

considerably. The electron diffusion length in silicon at 2.43 MeV has
been measured to be (2.50 * 0.10) mm,

INTRODUCTION

There has been a large discrepancy betweenl’z’3 the experimental

results and the theoretical calculations of the electron transport
problem, Complications arise mainly from the statistical nature of the
ionization energy loss and the uncertainty of the effective Coulomb
interaction between the incident electrons and the atomic nuclei. In
principle, one should be able to solve the transport problem exactly if
the screening effects of the atomic electrons and the elastic scattering
of the incident electrons are known accurétely. However, this approach
will involve extremely long and tedious calculations on a computer and,
in any case, the exact solution for electron-nuclous elastic scattering

cross section has not yet been calculated. Consequently, theoretical



electron transport calculations have been, usually, made with various
degrees of simplification, The main purpose of the méasurements reported
here has been to provide experimental check on the theoretical transport
calculations. On the basis of such a comparison, one should be able to
write a computer code that is not excessively long and tedious and yet
predicts the experimental results with a good degree of accuracy. Once
such a program has been finally accepted, it could be used to assess the
effectiveness of complex engineering shields without having to make

actual measurements.

EXPERIMENTAL PROCEDURE

Figure 1 shows the experimental arrangement used in these measure-
ments., A well-collimated, narrow, electron beam of energy (2430 *+ 5)
KeV from an electrostatic generator was allowed to fall on a circular
silicon target. The silicon target thickness ranged from 10 to 60
percent of the continuous slowing down approximation range of incident
electrons in silicon. The transmitted electron spectra were measured
with a well-shielded and well-collimated 5 mm thick, 80 mm2 area, planar,
lithium drifted silicon detector. Spectra were measured with and
without & 5 mm thick aluminum disc in front of the detector assembly.
This technique enabled to allow for the X-ray contribution from the
target. The detectors were calibrated using cs137 and B1207 electron

sources, Figure 2 shows the conversion electron spectra from these

sources,




Figure 3 shows the spectra of mono-energetic electrons scattered
from a lot)ﬂgms/cm2 thick gold foil. Notice the steady increase in the
full width at half the maximum height (FWHM) of the scattered electron
peaks. This is probably due to the combined effects of the increased
energy uncertainty at higher electron energies and poorer resolving
power of the detectors for higher energy electrons. Figure 4 shows this
effect as a function of energy. Beyond an electron energy of 1500 KeV,
the FWHM rises steadily, although slowly, with the electron energy.
Figure 5 shows (pulse peak height)/(total area under pulse) as a function
of the incident electron energy on the gold foil, The information
contained in figures 4 and 5 is needed to introduce the effects of
finite resolving power of the detection system on the theoretical energy
histograms, Figure 6 shows the manner in which the effect is introduced.
As seen in the insert, a gaussian with an appropriate tail is drawn
such that the area under the histogram matches that under the pulse.
This process is repeated for each energy bin and a final, resultant,

curve is drawn to represent the complete histogram as shown here.

THEORETICAL CALCULATIONS
Ten thousand normally incident electrons are allowed to enter the
plane parallel slabs which are finite in one dimension and infinite in
another dimension. The history of individual electrons is followed in
the usual condensed random walk technique developed by Berger6. In
each condensed step, the multiple scattering by atoms is calculated
using Goudsmith-Saunderson theorys. The individual scattering cross

section used is that due to Mott® with screening effects as given by



Moliere7. The multiple inelastic scattering effects are sampled from

8 9

the Landau distribution™, modified in the manner of Blunk and Leisgang”. :
The secondary electrons - both photoelectrons and those resulting from
inelastic collisions with the atoms - are included in the transport
calculation, For reasons of the necessary manageability of the
calculations, the following specific assumptions are made:

(1) The inelastic scattering probability is calculated using
Moller!O approach which disregards electron binding effects. However,
this disregard is not expected to have any significant effect at high
electron energies,

(2) The electron-position differences in the energy loss,
knock-on electron production and multiple elastic scattering are ignored.

(3) The electrons are not allowed to deflect at the time of
energetic bremsstrahlung production nor are they allowed to deflect at
the time of fast delta-ray production,

(4) The electron diffraction effects are completely ignored.
Only one scattering center is considered at a time.

This program is the basis of ETRAN-15 code of NBS11 which was used to make

the theoretical calculations,

EXPERIMENTAL RESULTS
Figure 7 shows a comparison between the experimental spectra and
the theoretical electron energy histograms for a number of target
thicknesses. Figure 8 shows a similar comparison after modifying the
theoretical energy histograms for the finite resolving power of the
detection system., From these comparisons, it is concluded that the
experimental spectra are wider than the theoretical spectra and that the

4




theoretical spectrum peaks slightly higher in energy than does the
experimental spectrum. Figure 9 shows a comparison between the
experimentally observed angular distribution and the theoretically
predicted distribution for two different target thicknesses., The
agreement is quite good. Figure 10 shows a comparison of the Bethe
function with the experimental and theoretical angular distributions.
It appears that the Bethe function is in reasonably good agreement with
the experiment and the theory. Figure 11 shows the dependence of
average electron deflection! on the target thickness, After a target
thickness of (2.50 t 0,10) mm, the incident electron beam does not diffuse
out any further. This is in contrast with the earlier hypothesis that

the electron beam is isotropically distributed after penetration through

thick targets.

CONCLUSIONS

From the above discussions, two major conclusions are drawn:
(1) The inclusion of energy straggling effects certainly improves the
agreement between the theory and the experiment. In previous reportsl,
we have compéred the experimental results with the theoretical calculations
in the continuous slowing down approximation and with partial inclusion
of energy loss straggling effects, The agreement was considerably worse
than in the present case, It is hoped that a more accurate incorporation
of Landau distribution function and inclusion of the correlation effects
ignored here will give better results. (2) The use of a generalization

of Foldy-Watson equations12 in evaluating elastic and inelastic electron



scattering may constitute an improvement. The essential feature of this

generalization is a more accurate description of the atomic form factor

as it enters small angle scattering cross section, The solution of

this electron transport equation utilizing these cross sections may

lead to better agreement with the experiment.
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